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A basic equation of dynamical diffraction for an imperfect crystal is derived based on a general dynami- 
cal theory of diffraction. This equation is given in the form of a differential equation, and therefore can 
be considered to describe the diffraction processes locally inside a crystal. A phenomenological inter- 
pretation of this equation helps to fill in the gap between modern quantum mechanical treatments and 
ordinary treatments by dynamical theory of diffraction for a perfect crystal. In the approximation of 
poor resolution the more exact equation reduces to Takagi's equation. A necessary condition which 
makes Takagi's equation valid leads to the concept of local reciprocal lattice vectors. 

1. Introduction 

A general dynamical theory of diffraction for an imper- 
fect crystal has been formulated previously by use of 
a quantum field theoretical technique* (Ashkin & Ku- 
riyama, 1966; Kuriyama, 1967a,b, 1968). The validity of 
this theory is not restricted by the magnitudes of 
strains (atomic displacements), and types of imperfec- 
tions, nor by the state of the incident beam. This 
theory is constructed from an atomistic point of view: 
the generalized polarizability for X-rays or the gene- 
ralized crystal potential for incoming electrons does 
not possess periodic translational invariance in imper- 
fect crystals. 

Much of the physics involved in diffraction from im- 
perfect crystals has been discussed in a previous paper 
(Kuriyama, 1969) where a standard iteration technique 
is applied to this new formulation; the effects of crystal 
imperfections on dynamical diffraction have been 
treated correctly by properly accounting for the phase 
modulation of the diffracted beams, and not as a 
result of the assumption of modified Bloch waves. 

Using this new formulation, a dynamical expression for 
the scattering amplitude of an imperfect crystal has 
been derived in a compact form (Kuriyama, 1970; here- 
after this paper will be referred to as I). 

On the other hand there have appeared a number of 
works on the dynamical theory of diffraction in im- 
perfect crystals (Penning & Polder, 1961, 1964; Kato, 
1963a,b,c, 1964a,b; Bonse, 1964; Kambe, 1965; Wil- 
kens, 1966; Takagi, 1962, 1969; Balibar & Authier, 
1967; Taupin, 1964; Chukhovskii & Shtolberg, 1970; 
Afanas'ev & Kohn, 1971; Howie & Whelan, 1961; 
Dederichs, 1966, 1967; and probably others). All but 
Dederich's work appear to be phenomcnological ex- 
tensions of classical (Ewald-Laue-Bethe) perfect crys- 
tal theory to imperfect crystals and, hence, only find 
applications in those cases in which distortions are 
small. 

Recent developments using such a phenomenologi- 
cal approach have led to equations such as Takagi's 
(1962, 1969). In this paper, therefore, the aim is to study 
the relation between Takagi's equation and the more 
exact dynamical equation. 

* The dynamical theory of diffraction has also been for- 
mulated for a perfect crystal, using quantum field theoretical 
techniques, by Ohtsuki & Yanagawa (1966) and Hannon& 
Trammell (1968, 1969). 

2. Dynamical scattering amplitude 

The scattering amplitude for an X-ray beam striking a 
crystal at position R with initial momentum k and 
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emerging at R' with momentum, k', is given (Ashkin 
& Kuriyama, 1966; Kuriyama, 1967a,b, 1968) by 

(k 'R ' ;  out I k, R; in) 

S S -- d3p ' d3pA*Oe,p ' ;R )S(p ,p)A0~,p,R), (2-1) 

where A is the Fourier transform of the free photon 
wave packet depending on a parameter R which indi- 
cates the spatial location for the maximum intensity. 
The function A determines the momentum and the 
energy distribution of the incoming X-ray beam. A* is 
the complex conjugate of A unless additional slit 
systems are introduced to detect scattered photons. 
A* may be replaced by a spectral function which charac- 
terizes the momentum and energy response of a detector 
when it is in use. The quantity S(p'p) is the scattering 
matrix element of the crystal. 

It has been shown in I that a compact expression of 
this matrix can be derived, under some conditions, for 
a crystal plate of thickness D: 

S(p', p) = (p~/lpl)~(Ip'l - [p l )  
. D  

x ~ ~ 3 ( p t + J t + q t - p : ) { e x p  [ - l  2 ~ -  ~ M(P')]}°}~ (2-2) 
q 

where the projection of a vector onto the crystal surface 
is described by a subscript t, and its projection along 
the normal of the surface by a subscript z. The matrix 
is a supermatrix, i.e. a matrix of matrices. The (I, J)  
element of a supermatrix is given by a matrix whose 
elements are specified by (q,q'). In this notation, a 
a supermatrix S is written [S]z,s.q'q' 

Expressing the matrix as a super matrixmakes 
it possible to identify the subscript, I or J, as a reci- 
procal lattice vector defined in the perfect reference 
crystal. The perfect reference crystal is an imaginary 
crystal which is obtained by putting all atoms of a 
given type at ideally periodic lattice sites. Consequently, 
the superscript, q or q', describes the deviation of an 
X-ray beam from an ideal direction of Bragg diffrac- 
tion. 

The matrix M is related to the Fourier transform of 
the generalized polarizability of the crystal. An ele- 
ment of M has the form (see I): 

[ M (p')]~:]' = [ MoO - 2]~:],, (2-3) 
where 

[M0@')]~:~' = 
[(p'-q-I)~-p~]a. . '~, . -~(a+q';  I+q), (2-4) 

and 

[O]I,j  - 1 I ,  + q~ 
P Z ' ' 

The 7 is given by 

1 
7 ( J + q ' ;  I + q ) =  - -~-~  _ v , ( J+q ' ;  I + q )  

exp [ - i ( J + q ' - I - q ) . ( l + u , ) ] ,  (2-6) 

where N is the total number of atoms in the crystal, 
v~ is the 'atomic' polarizability of the atom at the lth 
site, 1 is the position vector of the lth site in the perfect 
reference crystal, and uz is the displacement of the 
lth atom from its ideal position. 

If  all the positions of atoms and their atomic polar- 
izabilities in the crystals are known, then the scattering 
amplitude can be calculated from the exponential 
matrix element given by (2-2), using equations (2-3) 
through (2-6). Therefore, our problem is reduced to 
calculating the following matrix: 

[S(as)]~:]' = [ex p {iafM}]~:]', (2-7) 
where 

as=  -z/2p'~ = - z / 2 p  cos ~ s  (2-8) 

and cos ~ s  is the direction cosine of the propagation 
vector p'. 

By definition the exponential matrix satisfies the 
differential equation: 

dS(as )  _ i M. S(as) (2-9) 
das 

with the initial condition S(0)=I .  Therefore, as long 
as one can write the scattering matrix in an exponential 
matrix form, the calculation of the scattering matrix is 
equivalent to solving the differential equation (2-9). 
One may consider it as a basic diffraction equation. 

As discussed in I there are at least two major approxi- 
mations required to derive the scattering amplitude 
in form of an exponential matrix: one is that the recip- 
rocal lattice vectors of interest, such as I and J, 
should lie very close to the Ewald sphere, and the 
second, that the double Fourier transform of the 
polarizability v(kl,k2) of the 'atomic' electrons depends 
only upon the momentum change (k l -k2) ,  i.e. the 
scattering vector. The latter approximation holds al- 
most always for usual diffraction problems except 
when resonance absorption takes place via atomic 
electrons inside the crystal. Unless the atomic polariza- 
bility term creates additional poles in the scattering 
amplitude, this second approximation has no effect on 
the results. 

The first approximation was originally introduced 
to avoid mathematical complications due to back- 
ward scattering (specular reflection). A further in- 
vestigation makes it possible to replace this approxi- 
mation by a less restricted one. The well known two- 
wave approximation in ordinary dynamical theory may 
serve best as an example to give some idea about the 
backward scattering. The inverse photon Green's 
function (or the dispersion equation in ordinary dyna- 
mical theory) contains the energy term [see equation 
(2-18) in I] 

D-1 = ( k - I ) 2 -  co 2 - 

[Polarization t e r m ] -  (k--I) 2 -  Q2, (2-10) 

where we consider diffraction in a perfect crystal and 

A C 2 8 A  - 8 
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I is a reciprocal lattice vector. Equation (2-10) can be 
written 

D - X = ( Q - I ) 2 - Q 2 + 2 ( Q - I )  ( k - Q ) + ( k - Q )  2. (2-11) 

It is customary in the two-wave approximation to 
discard the second order term, ( k - Q )  2, so that one 
need only determine two tie points on the dispersion 
surface. In the quantum mechanical formulation of 
the scattering amplitude, this second order term can, 
however, be retained. It gives rise to two additional 
poles in the scattering amplitude, and these poles give 
the backward scattering of the type similar to specular 
reflection. The ratio of backward scattering to Bragg 
scattering is quite negligible, being of the order of 
( 1 - n )  z where n is the refractive index of the crystal 
(Ashkin & Kuriyama, 1966). 

This situation existed in the calculation of the 
scattering amplitude in I. The adoption of the above- 
mentioned first assumption enabled one to discard the 
second-order term. One could have calculated the 
scattering amplitude in I without this assumption. 
Then the result would have contained the additional 
terms, whose ratio to the leading term of an exponen- 
tial form is again of the order of (1 - n )  z. Consequently 
it follows that the scattering amplitude can be approxi- 
mated by a compact form of matrix exponential if the 
backward scattering can be considered negligible. 
Ordinary diffraction satisfies this condition. It can be 
understood from this condition that the scattering 
amplitude for low.energy electron diffraction cannot 
be approximated by an exponential matrix. 

3. Dynamical equation of diffraction 

The previous discussion has shown that the restric- 
tions on the validity of equation (2-9) are less severe 
than the ones originally imposed in I. It would be, 
therefore, most desirable to solve equation (2-9) as it 
i s  given for dynamical diffraction in an imperfect 
crystal. Its solution can be obtained in the form of a 
Feynman (1951) expansion using an iteration method. 
Such a solution would doubtlessly require a considerable 
amount of elaborate work. It would be worthwhile look- 
ing into the possibility of solving this equation in a differ- 
ent manner. Although it may cost the mathematical rigor 
which equation (2-9) enjoys, it is, nonetheless, interest- 
ing to know if equation (2-9) can be approximated 
by a simpler equation, and to find out how good the 
approximation will be. 

Furthermore, one may benefit from such an approach 
by being able to interpret equation (2-9) in terms of 
phenomenological (or classical) concepts of diffracted 
wave fields. It may also help to find conceptual rela- 
tions between existing approximations, most of which 
have been devised in one way or another as a result 
of extentions of the dynamical theory of diffraction in 
a perfect crystal. 

Let us assume that (1) the atomic polarizability 
v(kl,k2) is given as a function of k l - k 2 :  v(kx,k2) = 

v ( k ~ - k 2 )  , and (2) in the geometrical matrix elements 
(2-5), q, can be neglected compared to p', +Is.  These 
two assumptions are almost equivalent to the restric- 
tions used in I. For an imperfect crystal the reciprocal 
lattice points are not mathematical points, but have 
spatial dimensions. Consequently the momenta of 
possible scattered beams generally have directions 
deviated from the ideal directions defined by mathe- 
matical reciprocal points. This effect is known as line 
broadening in the kinematical diffraction theory. The 
assumption (2) implies that, even for the 'extended' 
reciprocal lattice points, the direction cosines of mo- 
menta of possible scattered beams can be approxi- 
mated by those expected in the perfect reference 
crystal. It should be noted that the assumption (2) is 
applied only to the geometry, not to the matrix ele- 
ments (2-4) which really describe the nature of dynami- 
cal interactions among scattered beams in the imperfect 
crystal. 

The matrix S is also a function of p' in equation 
(2-2). In this section we will recover the explicit de- 
pendence of S and M on p' in the expression (2-7) 
by writing, for example, 

s(a~)- s(a~ ;p')= s(p'). (3-1) 
In the present approximation the matrix M has the 
following property: 

[M(,p'+K+q~)]~;.]'=-P--~--+, K~ rM t'''~lq-qK'q'-qK (3-2) 
t X ~ ) J  I - - K , J - K  • 

P: 
It follows from equations (2-7) and (3-2) that 

r , ~ f  t \ ~ q - - q K , q ' - - q  K [S(p' + K +qK)]~;~'=t~tp )1 ~-K.J-K , (3--3) 

where another definition of matrix exponential 

1 A ,  exp A = 
n = 0  

has been used. 
It is easily understood from equation (2-2) that the 

matrix element , 04 [S(P)]0.J can be thought of as the 
amplitude of the beam scattered (or diffracted) ill the 
direction of p' = p + J + q when the incident beam has 
the direction of p. A general matrix element [S(p')]y:J' 
can then be interpreted as the amplitude of the beam 
scattered by ( J - I + p ' - q ) - B r a g g  diffraction in the 
direction of p' - I -  q since 

t q .q '  [S(p)],.a = [ S ( p ' - I  ,,~10.,'-q (3-4) 
- -  i l / J O ,  J - 1  

by (3-3). Therefore, equation (2-9) can now be con- 
sidered as a dynamical equation for multiple beams. 

Let us take as an example a single Bragg diffraction 
condition where two final states are characterized by 
photon momenta p ' = p K = p + K  with K = 0  for the 
transmitted beam and with K = H  for the H-Bragg 
diffracted beam. For simplicity we suppress the set of 
superscripts (q,q') without loss of generality. In this 
case, equation (2-9) produces two sets of differential 
equations depending upon which final state p~: is used 
to write the matrix element: 
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(1) pH-representation 

d~H [S(PH)IO,H=i[M(PH)S(pH)]O,H (3-5a) 

d 
[S(pH)]H, H = i[M(PH)S(pn)]H, H (3-5b) 

and (2) p0-representation 

d = i[M(p0)S(p0)]-H,0 (3-6a) -~0 [S(~0)]-- H,O 

d 
-~o  [S(P°)]°'° = i[M(po)S(po)]o,o. (3-6b) 

Here, at is given by equation (2-8) where Of is either 
Oo (the incident angle) or OH, (the angle of emergence). 
Using the properties (3-2) and (3-3) and equation 
(2-8), we obtain, for example, 

d cos Oo d 
dcr0 [S(Po)]-H,0-- cos OH dart [S(PH)]0'H 

p= d 
- p= + 1-1= dart [S(PH)]0'H" 

for the left hand term of (3-6a), and 

itM(po)S(po)]_H O = ( Pz )itM(pn)S(pn)]O,H 
' p , + H =  

for the right hand term. This proves that equation 
(3-5a) is, in fact, equivalent to equation (3-6a). Si- 
milarly equation (3-5b) is proven to be equivalent to 
equation (3-6b). 

The dynamical equation is therefore given in the 
mixed representation by 

d 
dtTr [S~K)]~;~" = i[M(PK)S~K)]~:~ ', (3-7) 

where 
PK = P + K + elK. (3-8) 

K, of course, takes the value of 0 and H in the case of 
a single Bragg diffraction. Again, a rigorously exact 
solution of equation (3-7) would follow that of equa- 
tion (2-9). However, equation (3-7) lends itself (more 
readily) to phenomenological interpretation; viz. study- 
ing the local behavior of the scattering amplitude. 

4.  A p p r o x i m a t i o n  o f  poor m o m e n t u m  resolut ion 

At this stage it may be worthwhile to think back 
to the nature of our assumptions which have helped to 
understand the physical meaning of the exponential 
matrix (2-7). Their effect on the scattering amplitude 
(2-1) has not yet been studied. Since the modulus 
squared of the scattering amplitude is the only obser- 
vable in a strict sense, it is important to find out how 
our observable has been affected by our assumptions. 

The assumption (2) has, in effect, meant that our 
geometrical resolution for the momenta of scattered 

photons is insufficient to resolve individual scattered 
beams around a Laue spot. The incident beam, how- 
ever, can still be an ideal plane wave, since its state is 
completely independent of both the state of scatterers, 
namely a crystal, and the state of detecting systems. 
The present geometrical condition can be written in 
the scattering amplitude (2-1) by the following spec- 
tral functions: 

1, i f k = p  (4-1) 
A(k,p)= 0, otherwise 

/K regardless °f q i f = 0  o r H  

A*(k ' ,p ' )=A*(k ' ,k+K+q)=  [0, otherwise. (4-2) 

The scattering amplitude is thus given by: 

kz 
(k';  out [ k; i n )=  ~ -  ~ [S(k + K + q)]°h~ (4-3) 

where k' is in the neighborhood of k + K and K takes 
on the value of 0 and H. If we specify the momentum 
of the out-going wave by 

k ' - - k K = k + K + q F = k K + q F ,  (4-4) 

equation (4-3), using (3-3), can be rewritten 

(k~; out [ k', i n ) -  kK,=k= ~ [S(k'K-- WJ"~10'q~'q0,X 

k= 
- kg.= ~ [S(k'K)]~:~F. (4-5) 

One can always set qv equal to zero if one wishes. 
Unfortunately this approximation is not of much 

help in simplifying equation (3-7). As demonstrated in 
a problem of X-ray interferometry (Kuriyama, 1971), 
the matrix S contains the exact phase relations between 
component waves. These exact relations are still re- 
tained in the approximate scattering amplitude (4-5) 
in spite of the gross approximation for momentum 
resolution. Therefore, we have to introduce some ap- 
proximation about those phases to the same degree of 
order as in the approximation for resolution. This may 
be done by dropping the phase of S entirely. 

To proceed, another important aspect must be taken 
into consideration. The matrix S of interest is mathe- 
matically described as a local function of at ,  as seen in 
equation (2-7). Although we have not given any phys- 
ical meaning to this quantity a~, the phases of S(ar) 
must be determined at the value of at. Instead of the 
approximate scattering amplitude (4-5), we may define 
a local approximate scattering amplitude without the 
exact phases of component waves* by 

* One may  define q~K(aK) by  taking a doub le  sum not  only 
over  q, bu t  also over  qe. In doing so, the local approx ima te  
scat ter ing ampl i tude  will have more  resemblance  to the fo rm 
of  statistical ensemble  average.  

A C 28A - 8* 
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kZ 
= 

1 
= [S(k K)]0K exp (-- iq RL) o +  

x exp (+ iqv. RL), (4-6) 

where RL is the actual position of an atom (or unit cell) 
of interest, being given by R , = L + u L ,  and is con- 
sidered to be a function of as. 

We thus obtain the differential equation for ~0K'S: 

d~0K -i(k~-k2)~oK-i ~ v(J) exp ( - i J .  RL)~Os-s 
dO'K 

i k~ 
()~X/--) ~ [2kx(q-qe) 

d ' q ' q F  + ~ {(q--qe)RL}] X [S(ks)]o.K exp (--iqRL) 

x exp (+ iqrRL), (4-7) 

where the dynamical equation (3-7) is used with the 
approximate form of v in M. In the derivation of the 
second term, the property (3-3) is used. 

We may define another form of the approximate 
scattering amplitude by 

(k,)lkKS N q ' q ' q F  [S(kr)]0,K ( - i q  @K(O'X) = ~ exp • RL) 

x e x p [ + i ( K + q r ) . R L ] ,  (4-8) 

where the cancellation of the phases is done including 
K. For this quantity we obtain the differential equa- 
tion: 

i(kz) d~s _ i(k2K_k2)+K_ i ~ V(J)+K-j-- -N 
d{T K j 

d 
x ~. [2kK(q--qF)+ ~ {(q-qF--K)RL}] 

q 
' q'qF ×[S(kK)]OK exp (-- iq.  Rr) 

exp [+ i(K + q F ) .  RL]"  (4-9) 

5. A further approximation: Takagi's equation 

Equation (4-7) can be simplified drastically if its third 
term is somehow set equal to zero. This simplification 
yields Takagi's equation [equation (42) in Takagi (1962, 
1969)]. Let us write 

Q(q)=ZkKq+ ~--o.~ (q. RL)=Zks{q--V(q. RL)}, (5-1) 

where equation (2-8) is used to rewrite the second term. 
In an approximation where the sizes of the reciprocal 
lattice points in the imperfect crystal (see § 3) are much 
smaller than the size of the reciprocal unit cell, one 
may practically set Q(q)= 0, regardless of the value ofq. 
This is one of the possible conditions making Takagi's 
equation valid. However, this approximation imposes 
a certain condition on the magnitude of the local 

atomic displacement UL, where UL is given by R L = L + UL. 
Another approximation may be given which appears 

to relax this condition on the magnitude of local dis- 
placements. Suppose that the sum over q in the third 
term of equation (4-7) is well represented by a single 
term for which q = ~(L), being a function of the position 
of the atom of interest. Then we can select for this 
value of ~(L) 

Q(~)=0,  (5-2) 
which implies 

uL)=0. (5-3) 

The condition (5-3) at the local point L immediately 
indicates that a local perfect reference crystal is chosen 
at this point L. The local perfect reference crystal is an 
imaginary crystal made up of unit cells whose basis 
vectors are given by a+V(a .  UL). In this approxima- 
tion, therefore, as is considered to represent a coor- 
dinate at L and around L exists a local reference crystal 
in which Takagi's equation is valid. 

This situation may be understood better from equa- 
tion (4-9). This equation is reduced under the local 
condition (5-3) to the following form: 

(-- i)630./~ =[k~--k 2 -  2kKV(KuL)]~:-- a,o ~ v(J)@K-j • 

(5-4) 

If the local perfect reference crystal is defined again at 
this point L, then the quantity 

K(L) = K - V ( K .  UL) (5-5) 

gives the local reciprocal lattice vectors at the point L. 
Thus equation (5-4) gives another form of Takagi's 
equation [See equation (40), Takagi (1969)]. 

Since equations (4-7) and (4-9) are differential equa- 
tions defined locally, one can make the conditions (5-3) 
valid locally at various points, L, in the crystal. In 
other words a real imperfect crystal may be divided 
into local cells (or volume elements), each of which is 
characterized by different local perfect reference crys- 
tals. Within these reference crystals, the simplified 
forms of equations (4-7) and (4-9), which are Takagi's 
equations (42) and (40), are considered to be valid in 
the present approximations. Therefore the validity of 
Takagi's equations requires that the condition (5-3) be 
satisfied locally in addition to the other approximations 
which were required to derive equations (4-7) and (4-9). 
Takagi's formulation is based on infinitesmal mosaicity 
of crystals. However, the use of even the more tradi- 
tional coarse mosaic picture for single crystals is of 
questionable value. 

6. Conclusion and discussion 

Starting with a rigorous expression for the scattering 
amplitude, we have proved that the calculation of the 
scattering amplitude is equivalent to solving the differ- 
ential equation (2-9), if two approximations, one for 



M A S A O  K U R I Y A M A  593 

atomic polarizability and the other for backward 
scattering, are satisfied. Thus equation (2-9) can be 
considered as the basic diffraction equation for an im- 
perfect crystal. 

Instead of solving equation (2-9) in a standard way, 
we have simplified it by proposing approximate scat- 
tering amplitudes under the condition of poor resolu- 
tion. Ultimately the simplified forms, equations (4-7) 
and (4-9), are reduced to Takagi's two forms by adding 
further the local conditions (5-3) for an arbitary local 
point in the crystal. 

In the dynamical theory of diffraction for a perfect 
crystal, the interactions between beams, characterized 
by reciprocal-lattice vectors K, are thoroughly taken 
into account. For an imperfect crystal, beams should 
be characterized not by K's alone, but by K's and q's. 
Any dynamical treatment of diffraction in an imperfect 
crystal should, therefore, deal not only with the inter- 
actions between K beams, but also with those between 
beams of different q's on an equal basis. However, we 
found that the approximations or assumptions which 
were required to obtain Takagi's forms almost forced 
us to abandon such a real dynamical property of multi- 
beam interactions; the interactions due to different 
q's were somehow blurred, and the resultant approx- 
imate forms of equation (2-9) contained only the inter- 
actions characterized by different K's. Thus they are 
treated dynamically only in a local sense, and in this, 
Takagi's theory is that of the perfect crystal applied to 
infinitesimally small mosaic blocks. But, from the 
derivation in § 5 it is seen that the size of blocks must 
have a physically meaningful minimum value. How- 
ever, it is very difficult to define such a minimum unit, 
as is often the case in the mathematical transition from 
a discrete model to a continuum model. 

As discussed previously by Kuriyama & Miyakawa 
(1970), the dynamical theory of diffraction for an im- 
perfect crystal must properly deal with the phase mo- 
dulation on diffracted beams, as a consequence of the 
presence of crystal imperfections. The approximations 
used in this paper have, in effect, replaced the phase 
modulation by a corresponding amplitude modulation. 
It is, therefore, not surprising that the approximate 
form of equation (2-9), that is, Takagi's equation, is of 
the same form as expected for dynamical diffraction 
in a perfect crystal. Naturally the approximations of 
amplitude modulation have a limited range of validity. 
In this approximation, the intensity of the diffracted 
beam diverges as the crystal becomes very imperfect 
(Kdhler, MShling & Peibst, 1970), while the correct 
treatment by phase modulation gives the intensity ex- 
pected from the kinematical theory (Kuriyama & Mi- 
yakawa, 1969; 1970). 

If  a real crystal can be replaced by a model crystal 
which consists of local mosaic blocks, the solution of 
the more exact equation (2-9) will not be much differ- 
ent numerically from the solution of Takagi's equation, 
as understood from our derivation in the previous sec- 
tions. In that case, his equation can probably be 
handled, analytically and numerically, more easily. If, 
however, solving his equation for an imperfect crystal 
requires as much effort as solving equation (2-9), then 
it is more desirable to solve equation (2-9) numerically, 
avoiding the approximation of poor resolution. 
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